An Intelligent Network Intrusion Detection System Based on Multi-Modal Support Vector Machines
نویسنده
چکیده
Increase in the number of network based transactions for both personal and professional use has made network security gain a significant and indispensable status. The possible attacks that an Intrusion Detection System (IDS) has to tackle can be of an existing type or of an entirely new type. The challenge for researchers is to develop an intelligent IDS which can detect new attacks as efficiently as they detect known ones. Intrusion Detection Systems are rendered intelligent by employing machine learning techniques. In this paper we present a statistical machine learning approach to the IDS using the Support Vector Machine (SVM). Unike conventional SVMs this paper describes a milti model approach which makes use of an extra layer over the existing SVM. The network traffic is modeled into connections based on protocols at various network layers. These connection statistics are given as input to SVM which in turn plots each input vector. The new attacks are identified by plotting them with respect to the trained system. The experimental results demonstrate the lower execution time of the proposed system with high detection rate and low false positive number. The 1999 DARPA IDS dataset is used as the evaluation dataset for both training and testing. The proposed system, SVM NIDS is bench marked with SNORT (Roesch, M. 1999), an open source IDS. An Intelligent Network Intrusion Detection System Based on Multi-Modal Support Vector Machines
منابع مشابه
Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملFalse Alarm Minimization Scheme based on Multi-Class SVM
The existing well-known network based intrusion detection/ prevention techniques such as the misuse detection technique, etc, are widely used. However, because the misuse detection based intrusion prevention system is proportionally depending on the detection rules, it causes excessive large false alarm which is linked to wrong correspondence. This study suggests an intrusion prevention system ...
متن کاملA Novel Local Network Intrusion Detection System Based on Support Vector Machine
Problem statement: Past few years have witnessed a growing recognition of intelligent techniques for the construction of efficient and reliable Intrusion Detection Systems (IDS). Many methods and techniques were used for modeling the IDS, but some of them contribute little or not to resolve it. Approach: Intrusion detection system for local area network by using Support Vector Machines (SVM) wa...
متن کاملIntelligent Intrusion Detection System in Wireless Sensor Network
Wireless Sensor Networks are highly distributed networks of tiny, light-weight wireless nodes, deployed in large numbers to monitor the environment. Monitoring the system includes the measurement of physical parameters such as temperature, pressure, relative humidity and co-operatively passing their data to the main location. Intrusion Detection System can act as a second line of defense and it...
متن کاملSupport Vector Machine Based Intrusion Detection Method Combined with Nonlinear Dimensionality Reduction Algorithm
Network security is one of the most important issues in the field of computer science. The network intrusion may bring disaster to the network users. It is therefore critical to monitor the network intrusion to prevent the computers from attacking. The intrusion pattern identification is the key point in the intrusion detection. The use of the support vector machine (SVM) can provide intelligen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJISP
دوره 7 شماره
صفحات -
تاریخ انتشار 2013